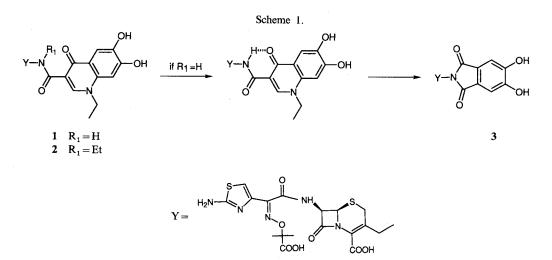
SYNTHESIS AND BIOLOGICAL ACTIVITY OF C-3' ORTHO DIHYDROXYPHTHALIMIDO CEPHALOSPORINS

MARIE-GENEVIÈVE BAUDART and LAURENT F. HENNEQUIN*

ZENECA pharma, Centre de Recherches Chemin de Vrilly, Z. I. la Pompelle, 51100 Reims, France

(Received for publication February 17, 1993)

A series of C-3' ortho dihydroxyphthalimido cephalosporins $3 \sim 7$ has been prepared by reaction of C-3' aminomethyl cephalosporin 41^{11} with the corresponding N-carboethoxyphthalimides $23 \sim 25$, 37, 38. These new caphalosporins exhibit excellent *in vitro* Gram-negative activities, including *Pseudomonas aeruginosa*, excellent β -lactamases stability and pharmacokinetics equivalent or better than ceftriaxone.


A number of new cephalosporins possess potent and extended antibacterial spectra and have made an important contribution to the treatment of infection²). However there is still a need for new semisynthetic cephalosporins with improved spectra, including *Pseudomonas aeruginosa*, increased β -lactamase stability (type I and plasmid mediated) and long half-lives.

Since the discovery by Eisai of a C-7 ureido cephalosporin bearing a catechol moiety, $E-0702^{3}$, a new class of compounds, catechol containing cephalosporins, has emerged^{4~6}. The catechol moiety predisposes the cephalosporins to pass into the bacterial cells not only passively *via* porins, the standard route of entry for cephalosporins, but also *via* an iron-uptake pathway^{7,8}.

During a programme to design modified cephalosporins, our laboratories have focused their interest on attaching a catechol moiety at the C-3' position of the cephalosporin nucleus *via* an amidic linkage^{1,9)} such as in compound 1 (scheme 1).

We have found that such a combination leads to compounds having very good *in vitro* antibacterial activities, including *P. aeruginosa*, good type I β -lactamases stability and long half-lives^{1,9}.

Particularly outstanding β -lactamase stability has been observed in compounds such as 1 and might

be explained partly by the hydrogen bond (Scheme 1) observed between the amidic NH and the carbonyl of the quinolone ring (1: NMR δ 10.4 ppm in DMSO- d_6 compared to 8.3 ppm for normal amidic compounds) which result in a planar C-3' substituent¹).

In order to understand the role played by the planar conformation of the C-3' substituent and to further improve the type I β -lactamase stability, we decided to replace this labile hydrogen bond by a covalent one as in 3 (Scheme 1). The synthesis and biological properties of these new compounds are described in this paper.

Chemistry

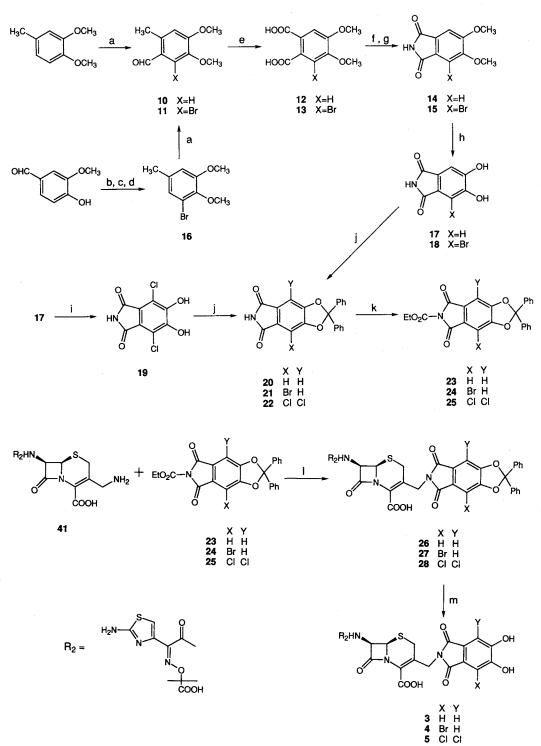
The strategy used to prepare C-3' ortho dihydroxyphthalimido cephalosporins¹⁰) $3 \sim 7$ involves *N*-carboethoxyphthalimides $23 \sim 25$, 37, 38 as intermediates. Such reagents are known to react smoothly with amines to give the corresponding *N*-phthalimido protected compound in good yield¹¹. Thus we synthesized the functionalised catechol phthalimides $23 \sim 25$, 37, 38 and reacted them with the C-3' aminomethyl cephalosporin 41^{1} .

3,4-Dimethoxytoluene was formylated using dichloromethylmethyl ether in the presence of tin chloride to give the aldehyde 10 (Scheme 2). The brominated isomer 11 was obtained from vanillin after monobromination and similar formylation. 10, 11 were then oxidized with KMnO₄ to give the diacids 12, 13 which were transformed into the corresponding phthalimides 14, 15 via the intermediate anhydrides. After deprotection of the catechol moiety using BBr₃, 17 was chlorinated using N-chlorosuccinimide and paratoluenesulfonic acid. In order to avoid side reactions during the N-carboethoxylation step, the catechol moiety was reprotected with an acid labile group; the most convenient proved to be the diphenylmethyl moiety. Protected phthalimides $20 \sim 22$ were then reacted with NaH followed by ethyl chloroformate to give reagents $23 \sim 25$.

Condensation of $23 \sim 25$ with 41 in DMSO occurs smoothly at room temperature and the protected cephalosporins $26 \sim 28$ were isolated in very good yield. Final deprotection of the catechol moiety was achieved using trifluoroacetic acid in the presence of traces of water to give the free *ortho* dihydroxy-phthalimido cephalosporins $3 \sim 5$ (Scheme 2).

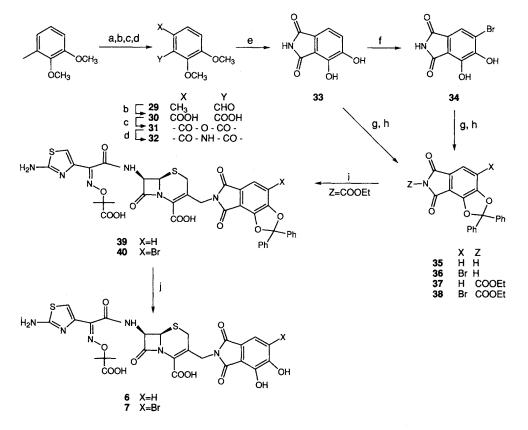
A similar strategy was used to generate the isomeric series, cephalosporins 6 and 7 (Scheme 3).

In addition, compound 8 (Table 1) used here as a comparator was obtained following a similar sequence starting from commercially available N-carboethoxyphthalimide.


Biological Results and Discussion

MIC values (μ g/ml) of the C-3' ortho dihydroxyphthalimido cephalosporins $3 \sim 7$ against a selection of Gram-positive and Gram-negative bacteria are shown in Table 1. Compounds $3 \sim 7$ have been compared with cephalosporin 1 and 2 (Scheme 1) and with classical standards.

A first look at Table 1 shows that activities of phthalimides $3 \sim 7$ are superior to simple monocyclic catechols such as 9 (Table 1) having a phenolic pKa \approx 9, against *E. cloacae*, *P. stuartii*, *C. freudii*, *S. marcescens* and *P. morganii*. Against *P. aeruginosa* $3 \sim 7$ are equivalent to 9.


The level of activity against Gram-negative organisms obtained with the parent deshydroxyphthalimido cephalosporin 8, compared with phthalimides $3 \sim 5$ underlines clearly the importance of the *ortho*-dihydroxy function.

Comparison of biological activities against *P. aeruginosa* 799/61 and *Escherichia coli* DC2, the permeability mutants lacking the outer membrane of 799WT and DC0, respectively, shows that $3\sim5$

Scheme 2. Synthesis of cephalosporines 3, 4, and 5.

a) Cl₂CHOCH₃, SnCl₄, b) Br₂, CH₃COOH, c) (CH₃)₂SO₄, K₂CO₃, d) 1) NH₂NH₂, 2) KOH, e) KMnO₄, K₂CO₃, f) AC₂O, g) NH₄OH, h) BBr₃, i) *N*-chlorosuccinimide, paratoluenesulfonic acid, j) Ph₂CCl₂ 160°C, k) 1) NaH, DMF, 2) ClCO₂Et, l) Et₃N, DMSO, m) TFA, H₂O.

Scheme 3. Synthesis of cephalosporines 6 and 7.

a) Cl₂CHOCH₃, SnCl₄, b) KMnO₄, K₂CO₃, c) Ac₂O, d) NH₄OH, e) BBr₃, CH₂Cl₂, f) Br₂, CH₃COOH, g) Ph₂CCl₂, h) 1) NaH, THF, 2) ClCO₂Et, i) **41**, Et₃N, DMSO, j) TFA, H₂O.

(MIC's: $0.001 \sim 0.008 \,\mu$ g/ml) and the parent 8 (MIC: $0.008 \,\mu$ g/ml) have similar intrinsic activity. However comparison of activities against *P. aeruginosa* 799WT and *E. coli* DC0 and their permeability mutants 799/61 and DC2, respectively shows that molecules $3 \sim 5$ bearing a catechol residue at C-3' penetrate well into bacteria (ratio 799WT/799/61: $3 \sim 5 = 1$ to 2; Ceftazidime = 30) while 8 is much less efficient (ratio 799WT/799/61=1,000). The result of passive diffusion is well represented by the activity of 8 against *P. aeruginosa* 799WT (MIC= $8 \,\mu$ g/ml).

This clearly indicates that the catechol moiety facilitates the penetration through the outer membrane of bacteria.

The mechanism of penetration has been shown to be ton B dependent⁸), the known functionality of the ton B gene product concerning the transport of iron-chelated siderophores in *E. coli*.

Against Gram-positive organisms $3 \sim 5$ are less active than cefpirome and cefepime. Against *Streptococcus pneumoniae* and *Streptococcus pyogenes* 4 and 5 are just equivalent to ceftazidime, 4 being the best compound.

Against inducible and derepressed type I β -lactamase-producers (see Table 1, footnotes b, e) P. aeruginosa, Enterobacter cloacae, Providencia stuartii, Citrobacter freundii, Serratia marcescens, Proteus morganii and Klebsiella oxytoca, C-3' ortho dihydroxyphthalimido cephalosporins $3 \sim 7$ are superior to

Table 1. Antibacterial properties of C-3' or the dihydroxyphthalimido cephalosporins comparison with standards (MIC's $\mu g/ml)^a$.

				-	•	-		-					
H ₂ N- N N N O	NH S		× z	X H Y OH Z OH T H	OH OH	Cl OH OH Cl	H H H Br OH OI OH OI	нн	S		N N		ОН
	он со	юн о					Comp	ounds		ĊOOH		ч Ö 	
Organisms	3	4	5	6	7		8	1	2	Ceftazidime	Cefpirome	Cefepime	9
Pseudomonas aeruginos	a												
18S ^e	≤ 0.008	0.004	0.004	≤ 0.008	≤ 0.008	3	16	≤ 0.008	0.015	2	8	4	0.008
18SSAI ^f	≤ 0.008	0.004	0.008	≤ 0.008	≤0.008	3	16	≤ 0.008	0.015	1	2	1	0.008
18SSH ^b	≤ 0.008	0.004	0.004	≤ 0.008	≤ 0.008	3	8	≤ 0.008	0.125	32	32	16	0.06
50	≤ 0.008	0.008	0.008	0.008	≤ 0.008	3	2	0.015	0.015	2	1	0.5	0.008
50DR	≤ 0.008	0.015	0.015	0.008	≤0.008	3	8	0.03	0.125	32	16	8	0.125
799WT°	≤ 0.008	0.001	0.002	≤ 0.008	≤ 0.008	3	8	≤ 0.008	0.015	0.25	0.125	0.06	0.008
799/61 ^d	≤ 0.008	0.002	0.004	≤ 0.008	≤ 0.008	3	≤ 0.008	≤ 0.008	0.015	≤ 0.008	≤ 0.008	≤ 0.008	0.008
PU21	≤ 0.008	0.008	0.015	≤ 0.008	≤ 0.008	3	16	0.03	0.03	1	1	1	
Enterobacter cloacae													
P99 ^{-e}	≤ 0.008	0.06	0.03	0.03	0.015	5	2	0.06	0.125	0.125	0.06	0.03	0.5
Р99+ь	0.03	0.125	0.06	0.06	0.06		16	0.06	1	32	0.5	0.25	16
I ⁺ 401029°	0.015	0.015	0.015	≤ 0.008	0.015	5	1	0.06	0.06	0.125	0.03	0.03	0.25
DR 401108 ^b	0.5	0.5	0.25	0.25	1		8	1	2	32	0.25	0.125	>128

Providencia stuartii													VC
I ⁺ 442019 ^e	≤ 0.008	0.004	0.004	0.015	0.06	2	0.25	1	0.25	0.125	0.06	0.125	VOL.
DR 442049 ^b	0.125	0.015	0.015	0.25	0.5	4	8	16	4	0.5	0.125	1	. 46
Citrobacter freundii													
I ⁺ 382010 ^e	≤ 0.008	0.001	0.001	≤ 0.008	≤ 0.008	1	≤ 0.008	≤ 0.008	0.125	0.015	0.015	0.03	NO.
DR 382031 ^b	0.06	0.125	0.06	0.125	0.125	32	0.125	- 1	128	1	0.5	32	.9
Serratia mercescens													
I ⁺ 421003°	≤ 0.008	0.004	0.004	≤ 0.008	≤ 0.008	4	0.015	0.03	0.25	0.06	0.06	0.06	
DR 421078 ^b	≤ 0.008	0.004	0.004	≤ 0.008	≤ 0.008	4	0.015	0.125	0.5	0.06	0.125	0.06	
Proteus morganii													
I ⁺ 433001°	≤ 0.008	0.004	0.004	≤ 0.008	≤ 0.008	1	0.125	0.5	0.125	0.03	0.03	0.125	
DR 433062 ^b	0.03	0.03	0.015	0.06	0.03	4	1	8	8	0.125	0.03	8	
Klebsiella oxytoca													
K1 ⁺ 395056°	≤ 0.008	0.002	0.004	≤ 0.008	≤ 0.008	<u>-</u>	≤ 0.008		0.5	1	ſ		-
K1 ⁻ 395055	≤ 0.008	0.001	0.004	≤ 0.008	≤ 0.008		≤ 0.008		0.06		0.008	0.015	THE
Escherichia coli													
DC0°	≤ 0.008	0.001	0.002	≤ 0.008	≤ 0.008	1	≤ 0.008	≤ 0.008	0.125	0.015	0.015	0.008	ō
DC2 ^d	≤ 0.008	0.001	0.001	≤ 0.008	≤ 0.008	0.06	≤ 0.008	≤ 0.008	0.06	0.015	0.015	0.008	JOURNAL
Staphylococcus aureus													N.
Oxford ^f	16	16	8	16	8	8	16	32	4	0.125	0.25	8	E
147N ^f	16	16	16	16	16	8	16	64	4	0.25	0.5	16	OF
Streptococcus pneumoniae	2												
671001	_	0.125	0.25		0.5	0.25	0.25	0.25	0.125	0.015	0.015	0.125	ź
Streptococcus pyogenes													TH
681018		0.25	0.5	0.5	1	0.06	0.25	1	0.125	≤ 0.008	≤ 0.008	_	ANTIBIO

^a IST growth medium, inoculum 10⁴ cfu per spot, 37°C; ^b constitutive derepressed type I β -lactamase-producer; ^c parent organism; ^d permeability mutant; ^e inducible type I β -lactamase producer; ^f non inducible mutant; ^g penicillin-sensitive *S. aureus.*

Compound	AUC* (mg/hour per liter)	Half-life* (hours)	Conc.* (at 3 hours) (mg/liter)	Measured pKa	
3	18.2	0.66	0.9	7.1	
4	113~152	1.8~3.3	14.2~18.0	5.9	
5	62.6	1.5	8.1	5.3	
6	36.4	1.3	4.4	6.3	
7	80.9	2.0	8.0	5.3	
Ceftriaxone	75.7	1.5	8.8	_	

Table 2. Pharmacokinetics measured in marmosets following intravenous administration of a 3 mg/kg dose.

* Measured by bioassay.

ceftazidime. $3 \sim 7$ also proved to be 2 to 100 times more active against constitutive derepressed and inducible type I β -lactamases-producing strains than cefepime and cefpirome (Table 1).

Comparison of mic's against β -lactamase-derepressed producers (Table 1 footnote b) and the corresponding β -lactamase-inducible producers (Table 1 footnote e) indicates that $3 \sim 7$ are more stable to β -lactamases than the monocyclic catechol and than ceftazidime (*E. cloacae* P99⁺/P99⁻: $3 \sim 7$: ratio = $2 \sim 4$, 9: ratio = 32, ceftazidime: ratio = 256; *C. freundii* DR382031/I⁺382010: $3 \sim 7$: ratio = $7.5 \sim 125$, 9: ratio = 1,067, ceftazidime: ratio = 1,024). Similar comparisons indicates (Table 1) that C-3' ortho dihydroxyphthalimido cephalosporins $3 \sim 7$ are marginally more stable to β -lactamases than cefepime and cefpirome, the accepted type I "stable cephalosporins", against *E. cloacae* (comparison P99⁺/P99⁻) and *C. freundii* (I⁺382010/DR382031) but are very similar against *E. cloacae* (comparison I⁺401029/DR401108), *P. stuartii, S. marcescens* and *P. morganii* (see Table 1).

Overall the activity and stability against constitutive and inducible derepressed type I β -lactamaseproducing strains has been improved. These results showed clearly that the stability observed in compounds possessing an H-bonding between the NH of the C-3' amidic linkage and the carbonyl group of the quinolone moiety (Scheme 1) (comparison of 1 and 2) has been reinforced in phthalimido catechol cephalosporin such as 3. Furthermore the bulk of C-3' phthalimido substituents as well as the acidity of the OH of the *ortho*-dihydroxy moiety reinforce the observation that hindrance at C-3' and acidity of the catechol^{1,9} improves the β -lactamase stability.

The pharmacokinetics of 5 and 7 measured in the marmoset (Table 2) were equivalent to those of ceftriaxone, an injectable cephalosporin suitable for once-daily dosing. 4 is clearly superior as measured by either half-life or the elevation of serum level which results in higher AUC's. As previously observed⁹) these pharmacokinetic parameters seem related to the pKa of the catechol moiety: molecules highly ionised at physiological pH have the longest pharmacokinetics (Table 2 comparison of 3 with 4 and 5 and comparison of 6 with 7). Nevertheless comparison of 4 and 5 (Table 2) indicates that additionnal factors can modulate the pharmacokinetics of such compounds. Amongst them we could probably suspect the serum protein binding and the ability of catechol-cephalosporins to be metabolized by the enzyme catechol-O-methyltransferase (COMT)¹².

Urinary recoveries (measured in marmosets, single iv dose of 3 mg/kg) of these compounds are equivalent to ceftriaxone; values of $\approx 25\%$ suggest a significant degree of biliary excretion. All three compounds are highly found to Human serum protein (measured at 50 mg/liter), ranking from 94% for 3 (equivalent to ceftriaxone) to 99.6% for 4 and 98% for 5.

Experimental

IR spectra were recorded as KBr pellets on a Perkin-Elmer 781 spectrophotometer. ¹H NMR were recorded on a JEOL FX90Q or a Brucker 300AC spectrometer. FAB mass spectra were obtained on a VG 7250 SA mass spectrometer. Analytical HPLC chromatography was carried out on Shimadzu LC6A apparatus using nucleosil C18 5 μ m columns, eluent MeOH-H₂O with 1:100 AcOH. Preparative medium pressure chromatography was carried out using Mitsubishi HP20SS resin, eluent MeOH-H₂O with 1:100 AcOH. C-3'-Aminomethyl cephalosporin **41** was described in the literature^{1,13)}.

4,5-Dimethoxy-2-methylbenzaldehyde (10)

To a solution of 3,4-dimethoxytoluene (15 g, 98.6 mmol) and dichloromethylmethyl ether (34.5 g) in dichloroethane (200 ml), at 0°C, was added SnCl₄ (100 ml) and, subsequently, further dichloroethane (200 ml). The resultant suspension was stirred at 0°C for 20 minutes and then stirred overnight at ambient temperature before being poured into $3 \times$ HCl (500 ml) at 0°C. Extraction into dichloromethane, drying of the organic phase and evaporation gave 4,5-dimethoxy-2-methylbenzaldehyde¹⁴⁾ (15.2 g); ¹H NMR (CDCl₃) δ 2.6 (s, 3H), 3.90 (s, 3H), 3.94 (s, 3H), 6.68 (s, 1H), 7.3 (s, 1H), 10.2 (s, 1H); CI-MS *m*/z 181 (M+H⁺, C₁₀H₁₃O₃); mp 76~78°C.

Anal Calcd for $C_{10}H_{12}O_3$: C 66.65, H 6.71. Found C 66.62, H 6.98.

11, 29¹⁵⁾ were prepared in a similar way:

11: yield 98%; ¹H NMR (DMSO- d_6) δ 2.52 (s, 3H), 3.77 (s, 3H), 3.9 (s, 3H), 7.0 (s, 1H), 10.3 (s, 1H); IR v_{max} cm⁻¹ 1680, 1595; CI-MS m/z 259, 261 (M+H⁺, C₁₀H₁₂O₃Br); mp 114~115 °C.

Anal Calcd for $C_{10}H_{11}O_3Br$:C 46.33, H 4.25.FoundC 46.57, H 4.46.

29: yield 70%; ¹H NMR (DMSO- d_6 , CF₃COOD) δ 2.45 (s, 3H), 3.7 (s, 3H), 3.85 (s, 3H), 7.0 (d, 1H), 7.55 (d, 1H), 9.99 (s, 1H); IR v_{max} cm⁻¹ 1690, 1600. A sample recrystallized twice from petroleum ether gave a melting point of 52~54°C (lit.¹⁵⁾ mp 53.5~54.5°C).

2-Carboxy-4,5-dimethoxybenzoic Acid (12)

To aldehyde 10 (5 g, 44.4 mmol) and potassium carbonate (5 g) in water (21 ml) at 80°C was added, in one portion, a solution of potassium permanganate (19 g) in water (170 ml). The solution was heated at 90~95°C for 1 hour, cooled, neutralized with 5 N HCl (50 ml) and filtered through diatomaceous earth. The aqueous phase was concentrated and extracted into ethyl acetate; the organic phase was dried and evaporated to give 2-carboxy-4,5-dimethoxybenzoic acid (2.85 g); ¹H NMR (CDCl₃ - DMSO- d_6) δ 3.95 (s, 6H), 7.5 (s, 2H), 11.2 (broad s, 2H), mp 196~198 °C (lit.¹⁶⁾ mp 198~199.5 °C).

Diacids 13, 30 were prepared in a similar way:

13: yield 25.6%; ¹H NMR (DMSO- d_6 -CF₃COOD) δ 3.85 (s, 3H), 3.95 (s, 3H), 7.55 (s, 1H); IR v_{max} cm⁻¹ 3400~2400, 1720~1700, 1580; mp 194~196°C.

Anal Calcd for C₁₀H₉O₆Br: C 39.36, H 2.95. Found C 39.74, H 3.14.

30: yield 27%; ¹H NMR (DMSO- d_6 - CF₃COOD) δ 3.74 (s, 3H), 3.9 (s, 3H), 7.1 (d, 1H), 7.7 (d, 1H); IR ν_{max} cm⁻¹ 3750 ~ 3200, 1700.

3,4-Dimethoxyphthalimide (14)

The di-acid $\overline{12}$ (1.5 g, 6.6 mmol) and acetic anhydride (6 g) were heated at reflux for 1 hour. The mixture was cooled and evaporated to provide dimethoxyphthalic anhydride (1.28 g); ¹H NMR (DMSO- d_6) δ 3.99 (s, 6H), 7.6 (s, 2H).

To the crude anhydride (2.0 g, 9.6 mmol) was added 28% ammonia solution (2.3 g) and the solution was taken to boiling-point, eliminating water in order to obtain a thick paste.

This was cooled to give a brown solid which was finely ground. This solid was heated by a flame

(without fusion) to give dimethoxyphthalimide¹⁶) (1.7 g). The reaction was monitored by HPLC. **14** was recristallized using EtOH - petroleum ether. ¹H NMR (DMSO- d_6) δ 3.9 (s, 6H), 7.3 (s, 2H), 10.9 (s, 1H); CI-MS m/z 225 (M+NH₄⁺); mp>320°C (lit.¹⁶) mp>300°C).

```
Anal Calcd for C_{10}H_9NO_4:C 57.97, H 4.34, N 6.76.FoundC 57.73, H 4.55, N 6.78.
```

Phthalimides 15, 32 were prepared in a similar way. Intermediate anhydrides were used crude without purification.

15: 1) anhydride: yield 100%; ¹H NMR (DMSO- d_6) δ 3.85 (s, 3H), 4.1 (s, 3H), 7.75 (s, 1H); 2) **15**: yield 100%; ¹H NMR (DMSO- d_6) δ 3.85 (s, 3H), 4.0 (s, 3H), 7.47 (s, 1H), 11.25 (m, 1H); IR v_{max} cm⁻¹ 3400 ~ 3100, 1770, 1740 ~ 1710, 1595; CI-MS m/z 285, 287 (M, C₁₀H₈NO₄Br).

32: 1) anhydride **31**: yield 100%; ¹H NMR (DMSO- d_6) δ 3.98 (s, 3H), 4.05 (s, 3H), 7.6 (d, 1H), 7.8 (d, 1H); IR v_{max} cm⁻¹ 1780, 1850; 2) **32**: yield 50%; ¹H NMR (DMSO- d_6) δ 3.92 (s, 3H), 3.97 (s, 3H), 7.35 (d, 1H), 7.52 (d, 1H), 11.0 (s, 1H); IR v_{max} cm⁻¹ 3200, 1765, 1740 ~ 1710, 1600; mp (EtOH) 225 ~ 228°C¹⁷); CI-MS m/z 207 (M, C₁₀H₉NO₄).

3,4-Dihydroxyphthalimide (17)

To the dimethoxyphthalimide 14 (3.1 g, 14.9 mmol) were added BBr₃ (12 ml) and dichloromethane (30 ml). The suspension was stirred at ambient temperature until HPLC showed that starting material had disappeared. Excess solvent was evaporated and the resultant solid cooled to 0°C and treated with ice and then with water (80 ml). The mixture was stirred for 45 minutes at ambient temperature, water (40 ml) removed by evaporation and the residue purified by column chromatography to provide dihydroxyphthalimide 17 (2.13 g); ¹H NMR (DMSO- d_6) δ 7.1 (s, 2H), 10.25 (br s, 2H), 11.25 (br s, 1H).

Dihydroxyphthalimides 18, 33 were prepared in a similar way: 18: yield 95%; ¹H NMR (DMSO- d_6) δ 7.1 (s, 1H); IR v_{max} cm⁻¹ 3600 ~ 2900, 1760, 1720 ~ 1700.

Anal Caled for C₈H₄NO₄Br: C 37.23, H 1.56, N 5.43. Found C 37.59, H 1.68, N 5.20.

33: yield 68%; ¹H NMR (DMSO- d_6) δ 7.1 (m, 2H), 10.75 (m, 1H); IR v_{max} cm⁻¹ 3500~2900, 1760, 1720; EI-MS m/z 179 (M, C₈H₅NO₄).

3,4-Diphenylmethylenedioxyphthalimide (20)

A suspension of the dihydroxyphthalimide 17 (350 mg, 19 mmol) in diphenyldichloromethane (4 g) was heated at 160°C for 3 hours. The resultant solution was cooled and washed with petroleum ether (3×10 ml). The petrol phase was separated to give a brown oil which was collected and triturated under diethyl ether (5 ml) to give as a chestnet brown solid, diphenylmethylenedioxyphthalimide 20 (300 mg); ¹H NMR (DMSO- d_6) 7.5 (m, 12H), 11.05 (s, 1H); CI-MS m/z 344 (M + H⁺, C₂₁H₁₄NO₄); mp 170 ~ 173°C.

Anal Calcd for C₂₁H₁₃NO₄: C 73.47, H 3.79, N 4.08. Found C 73.03, H 4.05, N 3.96.

Cooling of the petrol phase afforded a second fraction of the phthalimide (250 mg).

21 and 22 were recristallized from EtOH - petroleum ether.

Phthalimides 35, 36, 21 and 22 were prepared in a similar way:

21: yield 62.5%; ¹H NMR (DMSO- d_6) δ 7.5 (s, 1H), 7.55 (s, 10H); IR v_{max} cm⁻¹ 3400~3100, 1780, 1715; mp 194~196°C; CI-MS m/z 422, 424 (M+H⁺, C₂₁H₁₃NO₄Br).

Anal Caled for C₂₁H₁₂NO₄Br: C 59.71, H 2.84, N 3.31. Found C 59.55, H 2.96, N 3.35.

20 11 500/ 14 NUAD (D.) 57 5 (101) 1D - -1 2000 1770

22: yield 58%; ¹H NMR (DMSO- d_6) δ 7.5 (s, 10H); IR v_{max} cm⁻¹ 3200, 1770, 1720; white plates mp 230~232°C; CI-MS m/z 412, 414 (M+H⁺, C₂₁H₁₂NO₄Cl₂).

 $\begin{array}{rl} \mbox{Anal} \mbox{ Calcd for } C_{21}H_{11}NO_4Cl_2; & C \mbox{ 61.16, H 2.70, N 3.42.} \\ \mbox{ Found } & C \mbox{ 61.23, H 2.89, N 3.39.} \end{array}$

35: yield 49%; ¹H NMR (DMSO- d_6) δ 7.4 (s, 2H), 7.55 (s, 10H), 11.2 (s, 1H); IR v_{max} cm⁻¹ 1770,

VOL. 46 NO. 9

1720, 1700; CI-MS m/z 343 (M, C₂₁H₁₃NO₄).

36: yield 80%; ¹H NMR (DMSO- d_6) δ 7.55 (s, 11H), IR v_{max} cm⁻¹ 1770, 1720. Anal Calcd for C₂₁H₁₂NO₄Br: C 59.71, H 2.84, N 3.31.

Found C 59.84, H 3.04, N 3.30.

N-Carboethoxy-3,4-diphenylmethylenedioxyphthalimide (23)

To a suspension of sodium hydride (4 mg, 50%) (washed with tetrahydrofuran) was added, dropwise, a solution of phthalimide **20** (500 mg, 1.45 mmol), in DMF (1.5 ml). The mixture was stirred for 1 hour at ambient temperature, cooled to 0°C and ethyl chloroformate (180 μ l) was added dropwise. The resultant solution was stirred at 0°C for 5 minutes, stirred at ambient temperature for 3 hours, cooled to 0°C and water (5 ml) added with stirring. The solution was extracted with diethyl ether (150 ml). The ether phase was washed with water (3 × 20 ml), saturated NaCl (20 ml), dried, filtered and evaporated to give *N*-carboethoxy diphenylmethylenedioxyphthalimide (600 mg); ¹H NMR (CDCl₃) δ 1.40 (t, 3H), 4.45 (q, 2H), 7.25 ~ 7.75 (m, 12H).

N-Carboethoxyphthalimides 24, 25, 37 and 38 were prepared in a similar way. Compounds 23, 24, 38 decomposes partially when purified over silica or HP20SS resines and have thus been used crude in the next step.

24: yield 95%; ¹H NMR (DMSO- d_6 - CF₃COOD) δ 1.3 (t, 3H), 4.3 (q, 2H), 7.25 ~ 7.75 (m, 11H).

25: yield 100%; ¹H NMR (DMSO- d_6) δ 1.3 (t, 3H), 4.35 (q, 2H), 7.55 (s, 10H); IR v_{max} cm⁻¹ 1680. Recrystallized 3 times from EtOH. mp 158~160°C; CI-MS m/z 484, 486 (M+H⁺, C₂₄H₁₆NO₆Cl₂).

Anal Calcd for C₂₄H₁₅NO₆Cl₂: C 59.50, H 3.10, N 2.89. Found C 59.48, H 3.30, N 2.94.

37: yield 74.2%; ¹H NMR (CDCl₃) δ 1.45 (t, 3H), 4.45 (q, 2H), 7.2~7.7 (m, 12H); IR v_{max} cm⁻¹ 1800, 1780, 1720; CI-MS m/z 415 (M, C₂₄H₁₇NO₆).

38: yield 81.5%; ¹H NMR (DMSO- d_6) δ 1.35 (t, 3H), 4.4 (q, 2H), 7.55 (s, 11H); IR ν_{max} cm⁻¹ 1800, 1760, 1720.

7-[2-(2-Aminothiazol-4-yl)-2-((Z)-1-carboxy-1-methylethoxyimino)acetamido]-3-(5,6-diphenyl-methylenedioxy-1,3-dioxo-isoindol-2-ylmethyl)ceph-3-em-4-carboxylic Acid (26)

To a solution of 7-[2-(2-aminothiazol-4-yl)-2-((Z)-1-carboxy-1-methylethoxyimino)acetamido]-3aminomethylceph-3-em-4-carboxylic acid **41** (143 mg) in DMSO (2 ml) was added triethylamine (62.4 mg) followed by the phthalimide **23** (85.6 mg, 0.21 mmol) in DMSO (1 ml).

The solution was stirred at ambient temperature for 90 minutes, concentrated HCl (10 drops) added and after storage at 3°C for 12 hours the solution was evaporated and purified by column chromatography using HP20SS resin to give **26** (70 mg); ¹H NMR (DMSO- d_6 - CF₃COOD) δ 1.5 (2s, 6H), 3.3 (d, 1H), 3.6 (d, 1H), 4.4 (d, 1H), 4.90 (d, 1H), 5.1 (d, 1H), 5.8 (d, 1H), 7.05 (s, 1H), 7.25 ~ 7.75 (m, 12H).

27, 28, 39 and 40 were prepared in a similar way:

27: yield 61%; ¹H NMR (DMSO- d_6 -CF₃COOD) δ 1.5 (2s, 6H), 3.25 (dAB, 1H), 3.7 (dAB, 1H), 4.35 (dAB, 1H), 4.9 (dAB, 1H), 5.1 (d, 1H), 5.85 (d, 1H), 7.05 (s, 1H), 7.25~7.75 (m, 1H); IR v_{max} cm⁻¹ 3700~2700, 1770, 1710; FAB-MS m/z 889, 891 (M+H⁺, C₃₈H₃₀N₆O₁₁S₂Br).

28: yield 63.1%; ¹H NMR (DMSO- d_6 -CF₃COOD) δ 1.5 (2s, 6H), 3.3 (dAB, 1H), 3.65 (dAB, 1H), 4.4 (dAB, 1H), 4.9 (dAB, 1H), 5.1 (d, 1H), 5.85 (d, 1H), 7.05 (s, 1H), 7.55 (s, 10H); FAB-MS *m*/*z* 879, 881 (M + H⁺, C₃₈H₂₉N₆O₁₁S₂Cl₂).

39: yield 59.5% (not purified; used crude in the next step).

40: yield 69%; ¹H NMR (DMSO- d_6) δ 1.54 (s, 3H), 1.56 (s, 3H), 3.3 (dAB, 1H), 3.65 (dAB, 1H), 4.4 (dAB, 1H), 4.9 (dAB, 1H), 5.1 (d, 1H), 5.85 (d, 1H), 7.05 (s, 1H), 7.5 (s, 10H), 7.65 (s, 1H); IR ν_{max} cm⁻¹ 1770, 1710; FAB-MS m/z 889, 891 (M+H⁺, C₃₈H₃₀N₆O₁₁S₂Br).

 $\frac{7-[2-(2-Aminothiazol-4-yl)-2-((Z)-1-carboxy-1-methylethoxyimino)acetamido]-3-(5,6-dihydroxy-1,3-dioxo-isoindol-2-ylmethyl)ceph-3-em-4-carboxylic Acid (3)$

To 7-[2-(2-aminothiazol-4-yl)-2-((Z)-1-carboxy-1-methylethoxyimino)acetamido]-3-(5,6-diphenyl-methylenedioxy-1,3-dioxo-isoindol-2-ylmethyl)ceph-3-em-4-carboxylic acid (26) (70 mg) was added tri-

fluoroacetic acid (4 ml) followed by water (2 drops).

The solution was stirred for 4 hours at ambient temperature. The solvent was removed by evaporation and the solid residue was diluted with dimethylformamide (3 ml) and subjected to column chromatography using HP20SS resin to afford the title compound (30 mg); ¹H NMR (DMSO- d_6 - CD₃COOD - CF₃COOD) δ 1.5 (2s, 6H), 3.25 (d, 1H), 3.55 (d, 1H), 4.35 (d, 1H), 4.8 (d, 1H), 5.1 (d, 1H), 5.8 (d, 1H), 7.05 (s, 1H), 7.1 (s, 2H); FAB-MS m/z 647 (M+H); IR v_{max} cm⁻¹ 1755, 1700.

4, 5, 6 and 7 were prepared in a similar way:

4: yield 66%; ¹H NMR (DMSO- d_6 -CF₃COOD-CD₃COOD) δ 1.5 (2s, 6H), 3.25 (dAB, 1H), 3.55 (dAB, 1H), 4.35 (dAB, 1H), 4.9 (dAB, 1H), 5.1 (dAB, 1H), 5.8 (dAB, 1H), 7.05 (s, 1H), 7.15 (s, 1H); IR v_{max} cm⁻¹ 3700~3400, 1770, 1700; FAB-MS m/z 723 (M-H).

5: yield 38%; ¹H NMR (DMSO- d_6 - CF₃COOD - CD₃COOD) δ 1.5 (2s, 6H), 3.3 (dAB, 1H), 3.6 (dAB, 1H), 4.35 (dAB, 1H), 4.9 (dAB, 1H), 5.1 (d, 1H), 5.8 (d, 1H), 7.05 (s, 1H); IR ν_{max} cm⁻¹ 1760, 1700; FAB-MS m/z 715 (M+H).

6: yield 66%; ¹H NMR (DMSO- d_6 - CF₃COOD - CD₃COOD) δ 1.52 (s, 6H), 3.35 (d, 1H), 3.6 (d, 1H), 4.35 (dAB, 1H), 4.9 (dAB, 1H), 5.15 (d, 1H), 5.8 (d, 1H), 7~7.25 (m, 3H); IR v_{max} cm⁻¹ 1760, 1700; FAB-MS m/z 645 (M – H).

7: yield 61%; ¹H NMR (DMSO- d_6 - CF₃COOD - CD₃COOD) δ 1.53 (2s, 6H), 3.3 (dAB, 1H), 3.6 (dAB, 1H), 4.4 (dAB, 1H), 4.95 (dAB, 1H), 5.15 (d, 1H), 5.8 (d, 1H), 7.05 (s, 1H), 7.45 (s, 1H); IR ν_{max} cm⁻¹ 1760, 1700, 1630; FAB-MS m/z 723 (M – H).

7-[2-(2-Aminothiazol-4-yl)-2-((Z)-1-carboxy-1-methylethoxyimino)acetamido]-3-(1,3-dioxo-isoindol-2-ylmethyl)ceph-3-em-4-carboxylic Acid (8)

To 7-[2-(2-aminothiazol-4-yl)-2-((Z)-1-carboxy-1-methylethoxyimino)acetamido]-3-aminomethylceph-3-em-4-carboxylic acid (200 mg) in DMSO (2 ml) was added triethylamine (55 mg, 0.56 mmol) followed by N-carboethoxyphthalimide (41 mg, 0.186 mmol). The solution was stirred at ambient temperature for 6 hours, concentrated HCl (6 drops) added and after storage at 3°C for 12 hours, the solution was evaporated and purified by column chromatography using HP20SS resin to afford the title compound (30 mg); ¹H NMR (DMSO- d_6 -CF₃COOD-CD₃COOD) δ 1.5 (s, 6H), 3.35 (d, 1H), 3.65 (d, 1H), 4.45 (d, 1H), 5.0 (d, 1H), 5.15 (d, 1H), 5.85 (d,.1H), 7.05 (s, 2H), 7.85 (s, 4H); FAB-MS *m/z* 613 (M-H).

3-Bromo-4,5-dimethoxytoluene (16)

1) Bromine (16 g, 0.1 mol) was added dropwise to a solution of vanillin (15.2 g, 0.1 mol) in acetic acid (66 ml) and the mixture stirred 12 hours at ambient temperature. The resulting solid was filtered and washed with ethanol to give bromovanillin (16.5 g); yield: 72%; ¹H NMR (DMSO- d_6) δ 3.9 (s, 3H), 7.3 (s, 1H), 7.6 (s, 1H), 9.7 (s, 1H); IR ν_{max} cm⁻¹ 3500~3000, 1680.

2) To a solution of bromovanillin (8 g, 34.6 mmol) in DMF (65 ml) was added potassium carbonate (9.7 g, 69.2 mmol) followed by dimethylsulfate (5 ml, 51.9 mmol). Stirring was continued 3 days at ambient temperature after which water (400 ml) was added. The precipitate was filtered and recrystallized (petroleum ether) to afford 3-bromo-4,5-dimethoxybenzaldehyde (6 g); yield: 70%; ¹H NMR (DMSO- d_6 - CF₃COOD) δ 3.87 (s, 3H), 3.94 (s, 3H), 7.5 (s, 1H), 7.76 (s, 1H), 9.9 (s, 1H).

Anal Calcd for $C_9H_9O_3Br$:C 44.09, H 3.70.FoundC 44.36, H 3.81.

3) A solution of 3-bromo-4,5-dimethoxybenzaldehyde (3 g, 12.2 mmol) and hydrazine hydrate (15 g) in diethylene glycol (25 ml) was heated at 90 ~ 100 °C for 45 minutes. After cooling to ambient temperature KOH (1 g) was added and the solution was heated at 140 ~ 160 °C for 3 hours. After cooling the solution was poured into water (50 ml) and extracted with ether; the organic layer was washed with brine and dried (MgSO₄) to give the title compound 16[†] as an oil (1.69 g); yield: 60%; ¹H NMR (DMSO- d_6) δ 2.27 (s, 3H), 3.7 (s, 3H), 3.8 (s, 3H), 6.9 (s, 1H), 6.97 (s, 1H); IR v_{max} cm⁻¹ 1600.

1468

[†] NMR given in DMSO- d_6 for consistency—A sample ran in CCl₄ gave identical results to literature 18.

VOL. 46 NO. 9

2,3-Dihydroxy-4-bromophthalimide (34)

A solution of phthalimide **33** (0.26 g, 1.4 mmol) and bromine (0.23 g, 1.4 mmol) in acetic acid (13 ml) was stirred 3 hours at 50°C. After 3 hours a further portion of bromine (0.23 g) in acetic acid (3 ml) was added and heating continued for 1 hour at 50°C and 3 hours at 80°C. After cooling and filtration the precipitate was washed with acetic acid and dried to give **34** (350 mg); yield: 100%; ¹H NMR (DMSO- d_6) δ 7.4 (s, 1H); IR ν_{max} cm⁻¹ 1750, 1700.

Anal Caled for C₈H₄NO₄Br: C 37.21, H 1.55, N 5.42. Found C 37.51, H 1.70, N 5.24.

2,5-Dichloro-3,4-dihydroxyphthalimide (19)

To a suspension of 17 (0.4 g, 2.2 mmol) in acetic acid (12 ml) was added *N*-chlorosuccinimide (0.61 g, 4.6 mmol). After stirring 6 minutes at ambiant temperature paratoluenesulfonic acid (10 mg, 0.05 mmol) was added and the mixture heated at 60°C for 6 hours. After cooling, the precipitate was filtered off and dried overnight under vaccum (0.52 g); yield: 94%; ¹H NMR (DMSO-*d*₆, CF₃COOD) δ : No signals; CI-MS *m*/*z* 247, 249, 251 (M, C₈H₃NO₄Cl₂).

Anal Calcd for C₈H₃NO₄Cl₂: C 38.71, H 1.21, N 5.65. Found C 38.95, H 1.37, N 5.50.

Conclusion

Introduction of an *ortho* dihydroxyphthalimido residue at C-3' of the cephalosporin nucleus has led to compounds possessing exceptional *in vitro* antibacterial activity against Gram-negative becteria, in particular *P. aeruginosa*. Furthermore these compounds have shown exceptional β -lactamase stability, this being related to the planarity of the substituent and to the pKa of the catechol moiety. In the marmosets, several of these compounds also possess outstanding pharmacokinetics (equivalent or superior to ceftriaxone) which seemed highly dependent on the pKa of the hydroxy groups.

Acknowledgment

The authors thanks Dr. J. M. GIRODEAU for helpful discussions, Drs. T. D. HENNESSEY, N. A. C. CURTIS and Mr. R. G. WILSON and their colleagues at ICI Pharmaceuticals (Bacteriology Unit) for performing the *in vitro* biological testing and the determination of pharmacokinetics, serum protein binding and urinary recovery in animals models.

References

- ARNOULD, L. C.; A. BERTRANDIE, T. G. C. BIRD, D. BOUCHEROT, F. JUNG, J. J. LOHMANN, A. OLIVIER, J. P. BAILEY, W. BELL & G. M. DAVIES: Synthesis and structure-activity relationships of cephalosporins with C-3' catechol containing-residues. J. Med. Chem. 35: 2631 ~ 2642, 1992
- 2) O'CALLAGHAN, C. H.: Description and classification of new cephalosporins and their relationship with the established compounds. J. Antimicrob. Chemother. 5: 635~671, 1979
- KATZU, K.; K. KITOH, M. INOUE & S. MITSUHASHI: In vitro antibacterial activity of E-0702, a new semi-synthetic cephalosporin. Antimicrob. Agents Chemother. 22: 181~185, 1982
- 4) BRANCH, C. L.; M. J. BASKER, S. C. FINCH, A. W. GUEST, F. P. HARRINGTON, A. C. KAURA, S. J. KNOTT, P. H. MILNER & M. J. PEARSON: Studies on semi-synthetic 7α-formamidocephalosporins. III. Synthesis and antibacterial activity of some 7β-[D-2-(aryl)-2-[4-ethyl-2,3-dioxopiperazin-1-yl)carbonylamino]acetamido]-7α-formamidoceph-3-em-4-carboxylate derivatives. J. Antibiotics 40: 646~651, 1987
- 5) MOCHIDA, K.; Y. ONO, M. YAMASAKI, C. SHIRAKI, T. HIRATA, K. SATO & R. OKACHI: Aminothiazolylglycyl derivatives of carbacephem antibiotics. II. Synthesis and antibacterial activity of novel aminothiazolyl cephem compounds with hydroxypyridone moiety. J. Antibiotics 40: 182~189, 1987
- MOCHIZUKI, H.; H. YAMADA, Y. OIKAWA, K. MURAKAMI, J. ISHIGURO, H. KOSUZUME, N. AIZAWA & E. MOCHIDA: Bactericidal activity of M14659 enhanced in low-iron environments. Antimicrob. Agents Chemother. 32: 1648~1654, 1988
- WATANABE, N.; T. NAGASU, K. KATSU & K. KITOH: E-0702, a new cephalosporin, is incorporated into *Escherichia coli* cells via the ton B-dependent iron transport system. Antimicrob. Agents Chemother. 31: 497~504, 1987
- CURTIS, N. A. C.; R. L. EISENSTADT, S. J. EAST, R. J. CORNFORD, L. A. WALKER & A. J. WHITE: Iron regulated outer membrane proteins of *Escherichia coli* K12 and mechanism of action of catechol substituted cephalosporins.

Antimicrob. Agents Chemother. 32: 1879~1886, 1988

- 9) BIRD, T. G. C.; J. C. ARNOULD, A. BERTRANDIE & F. H. JUNG: Pharmacokinetics of catechol cephalosporins. The effect of incorporating substituents into the catechol moiety on pharmacokinetics in a marmoset model. J. Med. Chem. 35: 2643 ~ 2651, 1992
- HENNEQUIN, L. F. A. & D. M. HOLLINSHEAD (Imperial Chemical Industries PLC; ICI-pharma S. A.): Preparation of cephalosporins as bactericides. Eur. Pat. 412 763 A2, 1991 (CA 115, 28977r, 1991)
- NEEFKENS, G. H. L.; G. I. TESSER & R. J. F. NIVARD: A simple preparation of phthaloyl amino acids via a mild phthaloylation. Red. Trav; Chim. PAYS BAS 79: 688~698, 1960
- 12) OHI, N.; B. AOKI, T. KUROKI, M. MATSUMOTO, K. KOJIMA & T. NEHASHI: Semisynthetic β-lactam antibiotics. III. Effect on antibacterial activity and COMT-susceptibility of chlorine-introduction into the catechol nucleus of 6-[(R)-2-[3-(3,4-dihydroxybenzoyl)-3-(3-hydroxypropyl)-1-ureido]-2-phenylacetamido]penicillanic acid. J. Antibiotics 40: 22~28, 1987
- 13) FLYNN, E. H. (Ed.): Cephalosporins and Penicillins, Chemistry and Biology. Academic Press, 162, 1972
- 14) CHARLTON, J. L.; K. KOH & G. L. PLOURDE: An asymetric synthesis of 2-amino-6,7-dihydroxy-1,2,3,4-tetrahydronaphthatalene (ADTN). Can. J. Chem. 68: 2028~2031, 1990
- 15) BYCK, J. S. & R. C. DAWSON: The synthesis of compounds structurally related to poison Ivy Urushiol. 4-methyl-, 5-methyl-, 6-methyl-, and 4,5,6-trimethyl-3-pentadecylcatechol. J. Org. Chem. 33: 2451 ~ 2458, 1968
- 16) ANDERSON, D. R. & T. H. KOCH: 2,3-Bis(trimethylsyliloxy)-1,3-butadiene as a useful reactive diene in the Diels-Alder reaction. J. Org. Chem. 43: 2726~2728, 1978
- 17) Rönsch, H.: On papaver bracteatum--XIV. Ready access to benzylidene phthalimidine compounds from rhoeadine alkaloid-derived nitriles. Tetrahedron 37: 371~375, 1981
- 18) MCKILLOP, A.; A. G. TURRELL, D. W. YOUNG & E. C. TAYLOR: Thallium in organic synthesis. 58. Regiospecific intermolecular oxidative dehydrodimerization of aromatic compounds to biaryls using thallium (III) trifluoroacetate. J. Am. Chem. Soc. 102: 6504~6512, 1980